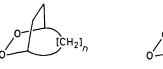
865

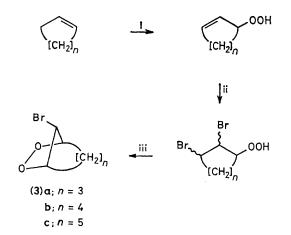

A General Route to Dioxabicyclo[n.2.1]alkanes

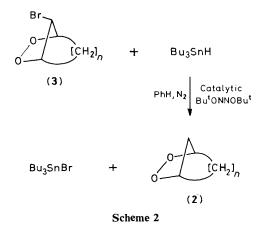
A. J. Bloodworth and Henny J. Eggelte

Christopher Ingold Laboratories, Chemistry Department, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

6,7-Dioxabicyclo[3.2.1]octane has been prepared from its *cis*-8-bromo derivative by reduction with tributyltin hydride generated *in situ* from bis(tributyltin) oxide and polymethylhydrogen siloxane; analogous reactions have afforded 7,8-dioxabicyclo[4.2.1]nonane and 8,9-dioxabicyclo[5.2.1]decane.

Saturated bicyclic peroxides that contain either a 5- or a 6membered peroxide ring are of interest because they are homologues of 2,3-dioxabicyclo[2.2.1]heptane, the reactive bicyclic peroxide skeleton in prostaglandin endoperoxides.¹ Three simple dioxabicyclo[n.2.2]alkanes (1) (n = 2-4) are known and each was prepared by singlet oxygenation of the appropriate cycloalka-1,3-diene followed by reduction with di-imide.² In contrast no general route exists for the synthesis




(2) a; n = 3

b; n = 4 c; n = 5 of dioxabicyclo[n.2.1]alkanes (2). We have prepared 8,9dioxabicyclo[5.2.1]decane (2c) by peroxymercuration of cyclo-octa-1,4-diene followed by reduction with sodium borohydride, but the method was unsuccessful with cyclohexa-1,4-diene.³ Adam⁴ has obtained 7,8-dioxabicyclo[4.2.1]nonane (2b) by di-imide reduction of the corresponding nona-2,4-diene; this is one of the three endoperoxides afforded by singlet oxygenation of cyclohepta-1,3,5-triene. Although 8-bromo,⁵ 2-bromo,⁶ 2,4-dibromo,³ and 1,5-dimethyl⁷ derivatives of 6,7-dioxabicyclo[3.2.1]octane have been prepared, the parent compound (2a) remains unreported. We now describe a general method for the preparation of dioxabicyclo[n.2.1]alkanes (2) (n = 3-5), which not only yields the elusive [3.2.1]-peroxide, but also represents a more convenient route to the [4.2.1]-compound.

The method involves reductive debromination of cis(n + 5)bromodioxabicyclo[n.2.1]alkanes (3), which are readily prepared from cycloalkenes by the simple sequence of reactions

Scheme 1. Reagents: i, ¹O₂; ii, Br₂; iii, AgO₂CCF₃ or Ag₂O.

shown in Scheme 1.⁵ We have now established conditions under which the bromides (3) (n = 3-5) react with tributyltin hydride to afford the parent peroxides (2)[†] (Scheme 2). An attractive feature of the method is that the required tributyltin hydride is generated *in situ* simply by mixing bis(tributyltin) oxide and polymethylhydrogen siloxane [equation (1)⁸].

 $x(Bu_3Sn)_2O + 2(MeSiHO)_x \rightarrow 2xBu_3SnH + 2(MeSiO_{1.5})_x$ (1)

Thus *cis*-9-bromo-7,8-dioxabicyclo[4.2.1]nonane (**3b**) (10 mmol) in benzene (5 cm³) was added during 5 min to a stirred mixture of $(Bu_3Sn)_2O$ (7.5 mmol) and $(MeSiHO)_x$

[†] A preliminary attempt with 8-bromo-6,7-dioxabicyclo[3.2.1]octane (3a) was unsuccessful.⁵ (0.9 g) in benzene (15 cm³) under nitrogen, followed by a few crystals of di-t-butyl hyponitrite. The mixture was stirred for *ca.* 18 h and the solvent then removed at 12 mmHg. The residue was partitioned between acetonitrile and hexane,⁹ and evaporation of the acetonitrile layer afforded a mixture of (**2b**) and (**3b**) (plus a little Bu₃Sn compound), from which (**2b**) (50%) was isolated by low-temperature column chromatography (-20 °C; SiO₂; CH₂Cl₂). The product was identified by comparison with literature data⁴ and was further characterised by ¹³C n.m.r. spectroscopy, δ 78.02, 42.38, 33.85, and 23.13 p.p.m. The main advantage of this route to (**2b**) over that based on cyclohepta-1,3,5-triene⁴ is that a difficult separation of sensitive isomeric endoperoxides is avoided.

A similar procedure starting with cis-10-bromo-8,9dioxabicyclo[5.2.1]decane (3c) cleanly afforded (2c)³ (50%) after 65 h. With cis-8-bromo-6,7-dioxabicyclo[3.2.1]decane (3a), however, extensive O-O cleavage accompanied and competed with reductive debromination and only 11% of (2a) could be isolated, even when the reaction time was cut to 1 h. Although the conversion of (3a) into (2a) is inefficient the reaction can be scaled up (e.g. \times 4) without difficulty, and chromatographic purification of (2a) is easy. This, coupled with the fact that (3a) need not be rigorously purified (rapid removal of hydroperoxides by passage through a small quantity of SiO₂ at -20 °C is adequate), and that the tributyltin hydride is generated *in situ*, render this a viable synthesis. 6,7-Dioxabicyclo[3.2.1]octane (2a) was obtained as white crystals, m.p. 62—64 °C; ¹H n.m.r. δ (200 MHz) 4.64 (2H, t, J 5 Hz), 2.46 (1H, m), 2.40 (1H, A of AB, J 11 Hz), 2.06 (2H, m), 1.80 (2H, m), and 1.54 (2H, m); ¹³C n.m.r. δ 76.42, 47.09, 30.75, and 17.95 p.p.m.; (Found: M⁺ 114.0665; $C_6H_{10}O_2$ requires M^+ 114.06808).

We thank the S.E.R.C. for financial support.

Received, 7th May 1982; Com. 513

References

- 1 W. Adam and A. J. Bloodworth, Top. Curr. Chem., 1981, 97, 121.
- 2 D. J. Coughlin, R. S. Brown, and R. G. Salomon, J. Am. Chem. Soc., 1979, 101, 1533, and references therein.
- 3 A. J. Bloodworth, J. A. Khan, and M. E. Loveitt, J. Chem. Soc., Perkin Trans. 1, 1981, 621.
- 4 W. Adam and M. Balci, J. Am. Chem. Soc., 1979, 101, 7537.
- 5 A. J. Bloodworth and H. J. Eggelte, J. Chem. Soc., Perkin
- Trans. 1, 1981, 1375.
 6 A. J. Bloodworth and H. J. Eggelte, J. Chem. Soc., Perkin Trans. 1, 1981, 3272.
- 7 R. M. Wilson and J. W. Rekers, J. Am. Chem. Soc., 1981, 103, 206
- 8 K. Hayashi, J. Iyoda, and I. Shiihara, J. Organomet. Chem., 1967, 10, 81.
- 9 J. M. Berge and S. M. Roberts, Synthesis, 1971, 471.